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Motivation

▶Active matter is an important and rapidly developing class of non-
equilibrium systems. Examples span all the scales of the living, from
cell tissues to bird flocks to human crowds.

▶Self-propelled particles is a paradigmatic model of active matter with
non-trivial collective behaviour.

▶Disordered dense matter experiences dynamical arrest when crowd-
ing overcomes excitation. At large packing fractions ϕ, disordered colloidal
packings have two-step relaxation dynamics, with slow, spatially correlated
motion (dynamical heterogeneity).

▶Dense active matter (e.g., cell tissues, dense self-propelled colloids) as-
sociates active physics and dense physics, with new interesting collective
motion. We explore in 2D how it emerges from the competition between
crowding and active forcing.

Model
Overdamped Langevin equation for disordered repulsive self-propelled particles
at zero temperature, with positions ri, diameters σi, and active forces pi

ξṙi = −∇iU + pi (1)

where U is a WCA potential with energy scale ε.

Ornstein-Uhlenbeck active forces with persistence time τp

τpṗi = −pi + ξ
√

2D0ηi (2)

with ηi a component-wise unit-variance zero-mean Gaussian white noise, such
that τp → 0 ⇔ Brownian limit at temperature Teff = D0/ξ.

System is disordered with polydispersity index I = Var(σ2
i )

1/2/σi = 20%.

We set length σ = σi = 1, energy ε = 1, and time ξσ2/ε = 1.

Control parameters: ϕ, τp, D0. Main features of phase space do not depend
on the free particle diffusion constant D0, and are presented for D0 = 1.
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Fig. 1: (a) Phase diagram at D0 = 1. (b) Phase separated system. (c) Displacement field
ri(t) − ri(0) in persistent active liquid close to MIPS (t/τp = 0.25). (d) Displacement field
in persistent active liquid close to dynamical arrest (t/τp = 2× 104).

▶There is a macroscopic phase separation at large τp.

▶Polydispersity stabilises the homogeneous liquid at large τp.

▶At large ϕ, this liquid undergoes a nonequilibrium glass transition.

▶Homogeneous liquids close to MIPS and dynamical arrest are both dynam-
ically heterogeneous, although the correlations have different origins.
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Fig. 2: (a) Snapshot of velocities vi ≡ ṙi (τp = 103, ϕ = 0.84). (b) Mean squared
displacement MSD(t) =

⟨
|ri(t)− ri(0)|2

⟩
.

▶Velocity correlations emerge from the interplay of persistence and repul-
sive interactions, and extend over several diameters on a time scale of
order τp.

▶These correlations lead to a collective motion, with particles moving dis-
tances of order 1 with their neighbours, associated with a distinct su-
perdiffusive regime.

Glassy dynamics

10−2 100 102 104

t/τp

10−4

100

104

M
S

D
(t

)

τp = 102

φ = 0.1
0.84
0.86

0.87
0.8775
0.88
0.8825

φ = 0.1
0.84
0.86

0.87
0.8775
0.88
0.8825

100 102 104

t/τp

0

2

4

6

8

10

α
2(
t)

φ = 0.1
0.84
0.86
0.87

0.8775
0.88
0.8825

φ = 0.1
0.84
0.86
0.87

0.8775
0.88
0.8825

(a) (b)

Fig. 3: (a) Mean squared displacement. (b) Non-Gaussian parameter of displacement dis-

tribution α2(t) =
(⟨

|ri(t)− ri(0)|4
⟩
/
⟨
|ri(t)− ri(0)|2

⟩2)
/2− 1.

▶Separation of time scales between initial liquid-like ballistic motion (t ≲
τp) and later relaxation (t ≫ τp).

▶Relaxation dynamics is increasingly heterogeneous with increasing ϕ.

▶At large τp and ϕ there is quasi-force-balance (v → 0)

0 = −∇i

(
U −

∑
j pj · rj

)
= −∇iUeff (3)

and dynamics is intermittent. System sits at a minimum of Ueff, and
rearranges once this minimum is destabilised when pi evolve.
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Fig. 4: Schematics of rare activation events over energy barriers (τp ≪ 1) and activity-driven
plastic events (τp ≫ 1).

Conclusion

▶Persistent motion and repulsive interactions lead to velocity correlations.

▶Close to MIPS, activity overcomes crowding, with correlated chaotic flow
on the time scale of τp.

▶Close to dynamical arrest, dynamics is intermittent and heterogeneous.


