Disordered collective motion in dense assemblies of persistent particles Yann-Edwin Keta¹, Robert L. Jack^{2,3}, and Ludovic Berthier^{1,3}

¹Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France ²Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom ³Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom yann-edwin.keta@umontpellier.fr

 (\bot)

Motivation

- Active matter is an important and rapidly developing class of nonequilibrium systems. Examples span all the scales of the living, from cell tissues to bird flocks to human crowds.
- Self-propelled particles is a paradigmatic model of active matter with non-trivial collective behaviour.
- **Disordered dense matter** experiences **dynamical arrest** when **crowding** overcomes **excitation**. At large packing fractions ϕ , disordered colloidal

Persistent active liquid

packings have two-step relaxation dynamics, with slow, spatially correlated motion (dynamical heterogeneity).

Dense active matter (*e.g.*, cell tissues, dense self-propelled colloids) associates active physics and dense physics, with new interesting collective motion. We explore in 2D how it emerges from the competition between crowding and active forcing.

Model

Overdamped Langevin equation for disordered repulsive self-propelled particles at zero temperature, with positions r_i , diameters σ_i , and active forces p_i

$$\xi \dot{m{r}}_i = -
abla_i U + m{p}_i$$

where U is a WCA potential with energy scale ε .

Ornstein-Uhlenbeck active forces with persistence time τ_p

$$\tau_p \dot{\boldsymbol{p}}_i = -\boldsymbol{p}_i + \xi \sqrt{2D_0} \boldsymbol{\eta}_i \tag{2}$$

with η_i a component-wise unit-variance zero-mean Gaussian white noise, such that $\tau_p \to 0 \Leftrightarrow$ Brownian limit at temperature $T_{\text{eff}} = D_0 / \xi$.

System is disordered with polydispersity index $I = Var(\sigma_i^2)^{1/2}/\overline{\sigma_i} = 20\%$.

Fig. 2: (a) Snapshot of velocities $v_i \equiv \dot{r}_i$ ($\tau_p = 10^3$, $\phi = 0.84$). (b) Mean squared displacement $MSD(t) = \langle |r_i(t) - r_i(0)|^2 \rangle$.

- Velocity correlations emerge from the interplay of persistence and repulsive interactions, and extend over several diameters on a time scale of order \(\tau_p\).
- These correlations lead to a collective motion, with particles moving distances of order 1 with their neighbours, associated with a distinct superdiffusive regime.

We set length $\sigma = \overline{\sigma_i} = 1$, energy $\varepsilon = 1$, and time $\xi \sigma^2 / \varepsilon = 1$.

Control parameters: ϕ , τ_p , D_0 . Main features of phase space do not depend on the free particle diffusion constant D_0 , and are presented for $D_0 = 1$.

Phase diagram

- Fig. 3: (a) Mean squared displacement. (b) Non-Gaussian parameter of displacement distribution $\alpha_2(t) = \left(\left\langle |\boldsymbol{r}_i(t) \boldsymbol{r}_i(0)|^4 \right\rangle / \left\langle |\boldsymbol{r}_i(t) \boldsymbol{r}_i(0)|^2 \right\rangle^2 \right) / 2 1.$
- Separation of time scales between initial liquid-like ballistic motion ($t \leq \tau_p$) and later relaxation ($t \gg \tau_p$).
- Relaxation dynamics is increasingly **heterogeneous** with increasing ϕ .
- At large τ_p and ϕ there is quasi-force-balance $(v \rightarrow 0)$

activated

jump

$$0 = -\nabla_i \left(U - \sum_j \boldsymbol{p}_j \cdot \boldsymbol{r}_j \right) = -\nabla_i U_{\text{eff}}$$
(3)

and dynamics is **intermittent**. System sits at a minimum of $U_{\rm eff}$, and rearranges once this minimum is destabilised when p_i evolve.

- Fig. 1: (a) Phase diagram at $D_0 = 1$. (b) Phase separated system. (c) Displacement field $r_i(t) r_i(0)$ in persistent active liquid close to MIPS ($t/\tau_p = 0.25$). (d) Displacement field in persistent active liquid close to dynamical arrest ($t/\tau_p = 2 \times 10^4$).
- There is a macroscopic phase separation at large τ_p .
- Polydispersity stabilises the homogeneous liquid at large τ_p.
 At large φ, this liquid undergoes a nonequilibrium glass transition.
 Homogeneous liquids close to MIPS and dynamical arrest are both dynamical arrest are both dynamically heterogeneous, although the correlations have different origins.

Fig. 4: Schematics of rare activation events over energy barriers ($\tau_p \ll 1$) and activity-driven plastic events ($\tau_p \gg 1$).

Conclusion

destabilised

minimum

Persistent motion and repulsive interactions lead to velocity correlations.
 Close to MIPS, activity overcomes crowding, with correlated chaotic flow on the time scale of \(\tau_p\).

Close to dynamical arrest, dynamics is intermittent and heterogeneous.