

Glassy and geometric frustration in a magnetic crystal

Piyush Jeena¹ Ludovic Jaubert¹

¹CNRS, LOMA, University of Bordeaux

Introduction

Figure 1. A plaquette of the triangular lattice.

Quenched Disorder

- The idea is to tune the Hamiltonian of our system via non-magnetic dilution $x \in (0 - > 2)$ and explore the existing magnetic orders.
- The model to induce chemical quenched disorder is to choose the interaction bonds based upon the nearest neighbouring non magnetic ions(Ti,Sn) surrounding a particular Er-Er bond of a tetrahedron. There are three possibilities for the interaction bond parameters :

	$Er_2Ti_2O_7$	$Er_2Sn_2O_7$
J_1	0.11 meV	0.07 mev
J_2	-0.06 meV	0.08 meV
J_3	-0.10 meV	-0.11 meV
J_4	-0.003 meV	0.04 meV

Type of bond values	Neighbouring atoms
$Er_2Sn_2O_7$	Sn < - > Sn
$Er_2Ti_2O_7$	Ti < - > Ti
intermediate	Sn < - > Ti or Ti < - > Sn

Finite size scaling at T = 0.01 K

Panel (a) indicates that, for Ising spins, the third spin is frustrated and for any of the two possible orientations, one link will yield a positive contribution to the energy.

Model

Recently studied frustated systems are pyrochlore oxides, with a general formula $A_2B_2Y_7$ (A = rare earth, B = metal(non-magnetic), Y = oxygen).

Figure 2. Pyrochlore lattice: The spins are located on the corner of every tetrahedra.

The model hamiltonian is the usual nearest- neighbor interactions compatible with the point group symmetry, T_d , of the pyrochlore lattice :

$$H_{ex} = \sum_{ij} J_{ij}^{\mu\nu} S_i^{\mu} S_j^{\nu} = \sum_t H_{tet}^{ex}[t], J_{01} = \begin{pmatrix} J_2 & J_4 & J_4 \\ -J_4 & J_1 & J_3 \\ -J_4 & J_3 & J_1 \end{pmatrix}$$
(1)

We studied the rare-earth pyrochlore oxide $Er_2Ti_{2-x}Sn_xO_7$ (Shirai et al., 2017) inspired from vastly studied pyrochlore oxides are : $Er_2Ti_2O_7$ (Savary et al., 2012) and $Er_2Sn_2O_7$ (Guitteny et al., 2013) benchmarked with their respective exchange interaction parameters. Here x is the chemical dilution.

PDF (Andrade et al., 2018) of OP_{Γ_5} **Order by Disorder**

	$Er_2Ti_2O_7$	$Er_2Sn_2O_7$
J_1	0.11 meV	0.07 mev
J_2	-0.06 meV	0.08 meV
J_3	-0.10 meV	-0.11 meV
J_4	-0.003 meV	0.04 meV

Order parameters :: Geometrical frustration (Yan et al., 2017)

	Definition in terms of spin components	Associated ordered phases
OP_{Γ_5}	$ \left(\frac{\frac{1}{2\sqrt{6}}\left(-2S_{0}^{x}+S_{0}^{y}+S_{0}^{z}-2S_{1}^{x}-S_{1}^{y}-S_{1}^{z}+2S_{2}^{x}+S_{2}^{y}-S_{2}^{z}+2S_{3}^{x}-S_{3}^{y}+S_{3}^{z}\right)}{\frac{1}{2\sqrt{2}}\left(-S_{0}^{y}+S_{0}^{z}+S_{1}^{y}-S_{1}^{z}-S_{2}^{y}-S_{2}^{z}+S_{3}^{y}+S_{3}^{z}\right)}\right) $	Ψ_2 and Ψ_3
OP_{PC}	$\begin{pmatrix} \frac{1}{2\sqrt{2}}(-S_0^y + S_0^z + S_1^y - S_1^z + S_2^y + S_2^z - S_3^y - S_3^z) \\ \frac{1}{2\sqrt{2}}(-S_0^x + S_0^z + S_1^x - S_1^z + S_2^x + S_2^z - S_3^x - S_3^z) \\ \frac{1}{2\sqrt{2}}(-S_0^x + S_0^y + S_1^x - S_1^y + S_2^x + S_2^y - S_3^x - S_3^y) \end{pmatrix}$	Palmer Chalker

$x = 0.0 :: Er_2Ti_2O_7$, $x = 2.0 :: Er_2Sn_2O_7$

Phase Diagram

Figure 3. Phase diagram of $Er_2Ti_{2-x}Sn_xO_7$: critical temperature T_c vs dilution x.

Semi-classical Spin dynamics

$$H_{ex} = \sum_{ij} J_{ij}^{\mu\nu} S_i^{\mu} S_j^{\nu}, \frac{dS_i}{dt} = S_i \times \left(\sum_{ij} J_{ij} S_j\right)$$
(2)

$$S_{i}(t+\Delta t) = S_{i}(t) + \frac{k_{1,i}}{6} + \frac{k_{2,i}}{3} + \frac{k_{3,i}}{3} + \frac{k_{4,i}}{6}, A(t) = \sum_{a,b,c,d} \frac{\frac{4}{N} \sum_{i} S_{i}(0) \cdot S_{i}(t) - \frac{4}{N} \sum_{i} S_{i}(t) \cdot \frac{4}{N} \sum_{i} S_{i}(0) \cdot S_{i}(t) - \frac{4}{N} \sum_{i} S_{i}(t) \cdot \frac{4}{N} \sum_{i} S_{i}(0) \cdot S_{i}(t) - \frac{4}{N} \sum_{i} S_{i}(t) \cdot \frac{4}{N} \sum_{i} S_{i}(0) \cdot S_{i}(t) - \frac{4}{N} \sum_{i} S_{i}(t) \cdot \frac{4}{N} \sum_{i} S_{i}(0) \cdot S_{i}(t) - \frac{4}{N} \sum_{i} S_{i}(t) \cdot \frac{4}{N} \sum_{i} S_{i}(0) \cdot S_{i}(t) - \frac{4}{N} \sum_{i} S_{i}(t) \cdot \frac{4}{N} \sum_{i} S_{i}(0) \cdot S_{i}(t) - \frac{4}{N} \sum_{i} S_{i}(t) \cdot \frac{4}{N} \sum_{i} S_{i}(0) \cdot S_{i}(t) - \frac{4}{N} \sum_{i} S_{i}(t) - \frac{4}{N$$

