

Arnoldi-Lindblad time evolution: Faster-than-the-clock algorithm for the spectrum of (Floquet) open quantum systems

F. Minganti¹ and <u>D. Huybrechts^{2,3}</u>

1. Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

2. Univ Lyon, Ens de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France 3. TQC, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium

We introduce a new method to efficiently provide the Liouvillian spectral decomposition. It grants access to the steady state, slow decaying processes and the low-lying spectrum of open quantum systems described by a Lindblad master equation. The method is general and model-independent, applicable to both time-independent systems as well as Floquet systems (i.e. periodically driven). Our method outperforms other diagonalization techniques and retrieves results for systems that would be inaccessible through exact diagonalization.

THE METHOD

Time evolution

Spectrum transformationdefine a time step T $\mathcal{E} = e^{\mathcal{L}T}$ $\hat{\rho}(t) = [e^{\mathcal{L}T}]^N \hat{\rho}(0) = \mathcal{E}^N \hat{\rho}(0)$ $\operatorname{Im}[\lambda_j]$ $\operatorname{Im}[\lambda_j]$

Krylov and Arnoldi method

As time passes, the eigenvectors of which the eigenvalues have a large negative real part become negligible in the time evolution.

