
Arnoldi-Lindblad time evolution: Faster-than-the-clock algorithm for
the spectrum of (Floquet) open quantum systems
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As time passes, the eigenvectors of which
the eigenvalues have a large negative real 
part become negligible in the time evolution.
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We introduce a new method to efficiently provide the Liouvillian spectral decomposition. It grants access to the steady state, slow 
decaying processes and the low-lying spectrum of open quantum systems described by a Lindblad master equation. The method is general

and model-independent, applicable to both time-independent systems as well as Floquet systems (i.e. periodically driven). Our method
outperforms other diagonalization techniques and retrieves results for systems that would be inaccessible through exact diagonalization.

CONCLUSIONS

• Method to efficiently determine the low-lying eigenvalues and
eigenmatrices of the evolution operator/ Liouvillian;

• Retrieves these features through a (shorter) time evolution of the
open system;

• Grants access to eigendecomposition of bigger system sizes;
• Outlook: extension to approximated time evolutions of open     

quantum systems as well as the quantum trajectory formalism.
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OPEN SYSTEM TIME EVOLUTION
time evolution
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