
We apply a magnetic field along the [111] direction for spin ice in the monopole crystal phase - a strongly fragmented phase in which a longitudinal fragment 

of the magnetic moments show antiferromagnetic long range order characteristic of a monopole crystal while the remainder, the transverse part forms a 

Coulomb phase with dipolar correlations [1,2,3]. The magnetic field couples to the transverse component, driving it towards saturated ferromagnetic state via 

a Kasteleyn transition [4].

We present numerical results generated from a worm Monte Carlo algorithm confirming the Kasteleyn transition. Tilting the field away from the [111] direction, 

the system orders in one of four topological sectors over a sphere of solid angle 4pi.

We show that the specific heat and susceptibility diverge logarithmically at the transition, consistently with the system being at the lower critical dimension. 

The reduced symmetry for the Coulomb phase correlations due to the applied field shows up in the evolution of simulated neutron scattering plots as the 

transition is approached. These show pinch point patterns that are continuously deformed as the field strength grows.

• 𝑇𝑐 verifies 0 = ΔF = ΔE − 𝑇𝑐ΔS

where 𝐸 = − Ԧ𝑆.𝐻 and 𝑆 = −σp ln 𝑝
• We obtain an equation for 𝑇𝑐: 𝑒µ0 = 𝑒µ1 + 𝑒µ2 + 𝑒µ3

where µ𝑖 are the chemical affinities µ𝑖 = 𝑒
൘−2𝑆𝑖.𝐻
𝑘𝐵𝑇𝑐
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• There’s a spin on each vertex. They must point toward the centre of a tetrahedron.
• The odd tetrahedrons must always have three spins in, and even ones three spins out.

𝐻

• The magnetisation field, 𝑀 of a given tetrahedron can be described by the four 
spins around.

• For instance, here : 𝑀 = +1,−1,−1,−1
• The field can then be decomposed in two terms:
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• Following the Helmholtz Hodge theorem we have:

A divergence less term (crystal phase)
A rotational less term (Coulomb phase)

• We can then rewrite magnetisation: 𝑀 = −∇ × Ԧ𝐴 + ∇𝜓
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