
DY
NA

MI
C P

RO
GR

AM
MI

NG
REI

NFO
RC

EM
ENT

 LEA
RN

ING
CONTROLLING THE SHAPE OF CLUSTERS

WITH A MACROSCOPIC FIELD
FRANCESCO BOCCARDO1 AND OLIVIER PIERRE-LOUIS2

Institut Lumière Matière, Université Lyon 1 – CNRS, France
1francesco.boccardo@univ-lyon1.fr, 2olivier.pierre-louis@univ-lyon1.fr

Problem: Control of non-equilibrium clusters Case study

Case study Methods

Lattice modelDP Results: Dynamicsl graphs

DP Results: Mean return time to target

Compute the optimal policy on the state space. This pro-
blem can be seen as the optimization of the first passage 
time on the graph of the dynamics.

Electromigration: current-induced mass 
transport that arises from a momentum 
exchange between conducting electrons 
and island atoms.

Science 328 (2010)
Phys. Rev. B 62 (2000)

Science 327 (2010)

Islands, Mounds and Atoms, Springer (2004)
Sci. Rep. 4 (2014)

Crys. Growth Des. 18 (2018)
Science 327 (2010)

For colloids:
 Electrophoresis,
 Thermophoresis,
 Magnetic force...

Learn from experience and find the optimal policy. This 
method is closer to what could be done in an experiment.

Requires complete knowledge of the governing laws of the 
environment.

F = macroscopic control parameter
e.g.: electric field, temperature gradient....

Requires continued observation of the evolution of the 
environment.
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Experimental application on colloids seems quantitatively reasonable.

Consider non mass-preserving processes.

Functional metamaterials (colloidal robots):

Aim: minimize physical time 
to reach a given target

Due to the symmetry of 
the target, the optimal 
action on the red state is 
not unique.

We can do better than the unbiased 
environment or a random policy!

By increasing the observation time of the environment, 
the optimal policy learned by the RL agent approaches 
the performance of the one computed with DP.

We can learn a policy by observing the environment! 
This policy is still better than the unbiased environment 
or a random policy, but not as efficient as the optimal 
policy computed with DP.

At high temperatures, learning is difficult because of 
thermal fluctuations.

When we consider a bigger target, a 
minimum in the optimal expected 
return time to target appears,  implying 
that there is a temperature at which the 
control of the cluster shape is optimal.

The optimal action on the 
state in the center of the 
graph switches from right 
to left when increasing the 
temperature.

Policy

How to obtain the 
optimal policy to 
control the cluster?

The transition in           leaves a trace 
in the first derivative of the optimal re-
turn time to target.

The minimum is not only observed 
in the return time to target, but also 
when starting from other states in the 
system.

This is not specific to this target but it 
is a common feature that appears as 
we consider targets of increasing size.

How to 
change F ?

Consider other models to describe different interactions:
   Magnetic interactions
   Acoustic interactions (Bjerknes force)
   Interactions with light (optical binding)
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Idea: control of shapes in non-equilibrium clusters

Model: lattice model Method 1: Dynamic Programming (DP)

Method 2: Reinforcement Learning (RL)

Perspectives

Case study: electromigration-driven islands


